

》MAX POWER

Horsepower and torque: what are they exactly, and how do you calculate those all-important figures? Stu explains all.

Having worked as a tuner for 17 years, Stewart 'Stu' Sanderson is one of the most-respected names in the business.
ALevel 5-tra
A Level 5-trained fuelinjection technician, in the past Stu has worked for a
Ford Rallye Sport dealer, a well-known fuel-injection specialist and variou tuning companies. Then seven years ago he
ioined forces with Kenny Walker and opened up Motorsport Developments
near Blackool (near Blackpool (01253 508400 , www.remapping. co.uk), specialising in engine
management live remapping, management live remapping,
as well as developing a range of Evolution chips which are now sold all over the world. He's also jointly responsible
with Webmaster, Petrucci for www.passionford.com. Started in 2003 , it's grown rapidly from a few friends contributing, to one of the
biggest Ford communities on biggest Ford communtics
the web.
Stu's enviable knowledge Stu's enviable knowledge
of the workings of modernof the workings of modern-
day Ford performance engines day Ford performance engines
means that every month he's means that every month he
just the man to explain how just the man to explain how
and why things work, and most importantly how they can be improved.

I HOPE

last month's article about rolling some of the things you sead abou why most of the figures they generate for flywheel power are into a topic about the figures they generate, or, more accurately the units they use to clarify the graphs they generate.
These units of measurement are of course the horsepower and torque. It is quite surprising how many people don't know the difference between the two when they really should do, so 1 am goin to dedicate this month to explainin
precisely all you will ever need to precisely all you will ever need to
know about power and torque, how it's derived and what the difference
is between the two.
WHAT IS TORQUE?
Before you can fully understand
horseyower, first you must
understand torque, so this is
where we will start. Torque is
simply a twisting force used to simply a twisting force used to
rotate an object around an axis. The measurement used to express torque is most commonly 'foot pound' (expressed normally as ft.lls
or lif.ft). or li.f.t).
This measurement unit is actual very simple to visualise and express

using common procedures. If
we take a spanner that is 1 ft long we take a spanner that is 1 ft long
and put it over a nut and then hans and put it over a nut and then hang a 10 il weight from the end of it, we
would be exerting a rotational force of 10 ft .lb on the nut. If we hung 30 lb weight off the end of the
spanner it would then exert 30 f spanner it would then exert 30 ft.lb of rotational force on the nut.
Conversely, if we extended the spanner to 2 ft long, and used the same 30 Ib weight on the end, we would then exert a force of 60 ft.Ib.
In a nutshell, the correct formula to In a nutshell, the correct formula to
use for calculation of torgue output is force exerted x distance from the axis. If that doesn't make sense, please read it again until it does so that you can proceed further, as it's
the most important part for you to the most important part for you to
grasp before moving on to tackle grasp befo
the rest.
WHAT IS WORK DONE?
Work isn't often talked about when
referring to cars, but itneeds to be referring to cars, but it needs to be
explained as it relates to power. As
a simple
definition, work is the transfer of energy from one thing to another It is, however, often mistakenly
believed to be the torque itself.
l This is a common mistake, and is because it uses the same units of measurement, such as ft.lb and
Newton metres (Nm) Even so it is Newton metres (Nm). Even so it is
not the same at all, as we can often exert torque and actually achieve no work at all. A good example of this is when we apply our $30 \mathrm{ft.lb}$ to a bolt already tightened to 60 ft .l. We wil
be exerting the torque as expected but it will not turn the nut and thus will not result in any work done. The work done must be expressed as a movement. The correct formula to use for calculation of work done is
force exerted x distance moved. No movement = no work done. Simple. and this brings us neatly to power. WHAT IS POWER? Power is the amount of work
done in a period of time, so

TORQUE = FORCE X DISTANCE

HORSEPOWER = TORQUE (ft.lb) X ENGINE SPEED/5252

e more power an engine evelops, the more work can.
Power can be best described by comparing two different humans. If we take a strong human and a weak human and ask them to
move 500 lb of sandbass from the ground, and put them on a shelf 1 It above the ground, the big strong man may be able to lift all of the sandbags up onto the shelf in one
go, but the weaker man may have so, but the weaker man may have 10 goes. Both men will have done 500 ft .lb of work, but the stronger
man did it much faster, thus he would be deemed more powerful
as he is now proven to be able to as he is now proven to be able to
do the same amount of work, but in less time than the less powerful man When related to a car, the more power an engine has the more work it can get done in less
time. This work may be perceived as powering a car up a large hill, or maybe accelerating the car hard on a long straight road.
WHAT IS HORSEPOWER? so what is horsepower, then?
well, , ames Watt came up with the measurement of horsepower for

HORSEPOWER CAN BE CONVERTED INTO OTHER UNITS AS WELL

1 HORSEPOWER = 746 WATTS So if you took a 1 horsepower horse and put it on a treadmill,

HORSEPOWER FOR AN HOUR = 2545 BTU
1HORSEPOWER FOR AN HOUR = 2545 BT you took that 746 watts and ran it through an electric heater amount of energy needed to raise the temperature of 1 lb of water 1 degree F).
 resumably, a horse producing 1 horsepower would burn 641 calories in one hour if it were 100 per cent efficient.
when he came to market his stean engine. In those days, the accepted power source was horses, and Wa the capabilities of his new steam engine to the horse. He spent a lon time comparing and measuring
a horse's ability to do work in a a horse's ability to do work in a given time span, and he eventually
decided upon a formula that gave a good indication of an average
horse's work ability. Watt measured a horse's ability IIt coal up a mineshaft using a rope and a pulley. After much calculation
he settled on the definition of one horsepower being $33,000 \mathrm{l}$ b.ft per minute...This basically means he decided that a horse was capable
of moving 33,000 lb of weight of moving $33,000 \mathrm{lb}$ of weight, 1 ft in
1 minute. How he came up with this figure is actually quite interesting so will tell you about it... He studied an average horse attached to a typical mill (say
grinding corn) walking around a 24 ft diameter circle. He calculated that the horse pulled with a force of 180 lb , although to my knowledge nobody has ever detailed how he
came up with that figure in the first came up with that figure in the first
place, but it is known that he did. He noted that a horse normally made 144 trips around the circle in an hour which, when calculated out to revolutions per minute meant that the horse travelled at
a speed of 180.96 ft per minute Watt simply rounded off the speed
oo 181 ft per minute and multiplied that by the 180 lb of force the hors pulled (181×180) and came up with 32,580 ft.Ib per minute. That figure was rounded off to $33,000 \mathrm{ft}$.lb per minute, the very same figure we still se today.
SO, what's the relationship
between power and torque? This is quite simple to work out by
using this equation toraue using this equation: torque (ft.lb) x
engine speed/ $5252=$ horsepower engine speed//5252 = horsepower.
So ifyou have an engine that generates 200 ft.lb of torque at 3000 rpm you multiply the two together and then divide it by 5252 and you ind that you have an engine that ($200 \times 3000 / 5252=114.24$ bhp)

5252? WHY?
Your next question is lexpect going o be what's the 5252 figure used for? Where did that come from
Well, remember that $33,000 \mathrm{ft}$.lb per minute? Well, if we break that down into seconds (divide it by 60) we get 550 ft .lb per second. So we
know that one unit of bhp $=550$ per second. The units of torque are in Ib.ft of course, so to get from torque to horsepower we need to find out
what the 'per second' unit is going what the 'per second' unit is goin
to be for the torque, and we get o be for the torque, and we get engine speed. Of course, engine speed is normally referred to in revolutions per minute (rpm) and since we want a 'per second' unit per minute into revolutions per second which as it happens is quite easy. We just divide the evs per minute number by 60 , 60 seconds in a minute. Now, what we need next is a dimensionless unit for revolutions. mis unit already exists and is in fact called a radian. A radian is a ratio of the length of an arc divided by
the length of a radius, so the units of length cancel out and you're

