## fasttech / TECH / MAPPING /

Words: Stewart Sanderson Photos: Michael Whitestone,

# BEFORE STARTING

The first rule of working on cars and using tools of any kind is don't ever skimp on decent protection. Goggles gloves, ear defenders, hasks and a set of overalls should be in your garage. Use them.

When using nower tools protective gear is essential — grinders and welders can make a real mess of your soft skin and bone if you get

it wrong. Never work under a car without supporting it using axle stands. A car falling on vou is not something vou'll be laughing about down the pub.



**PART3** So what actually happens at a live-mapping session then? Stu reveals all.



Having worked as a tuner for 17 years, Stewart 'Stu' Sanderson is one of the most-respected names in the business. A Level 5-trained fuelniection technician, in the past Stu has worked for a Ford Rallye Sport dealer, a wellknown fuel-injection specialist and various tuning companies. Then seven years ago he pined forces with Kenny Walker and opened up

Motorsport Developments near Blackpool (01253 508400, www.remapping.co.uk), specialising in engine management live remapping, as well as developing a range of Evolution chips which are now sold all over the world.

He's also jointly responsible with Webmaster, Petrucci for www.passionford.com.Started in 2003, it's grown rapidly from a few friends contributing, to one of the biggest Ford communities on the web. Stu's enviable knowledge of the workings of modern-day Ford performance engines means that every month he's just the man to explain how and why things work, and most importantly how they can

be improved.

HOPEFULLY you are fully up to speed with this series now and are fully aware of why your engine would benefit from mapping and what the mapping itself consists of. You should also have a pretty good idea what equipment is utilised to accurately perform it, as these topics were covered in some depth over the first two editions of my four-part mapping series (Fast Ford issues 253 and 254).

Once your appointment date arrives and you turn up in reception with a car ready for mapping, what happens next will depend upon one of two things: what type of car you are bringing us, and whether or not we have mapped one of them before. We map all forms of car from Audis to Porsches, but for the purpose of this article let's concentrate solely on Fords

As you'd expect we have mapped many different types of Fords from normally-aspirated CVH and Zetec engines to the various forms of turbo diesel, through to 650-plus bhp Ford Cosworths.

#### WHAT MAP?

If you want us to map a type of engine and management that we've mapped many times before then we will have already determined where the various maps are within the ECU calibration (or chip to you), what the maps do and what is required to modify them to make the engine and management perform correctly with your various modifications.

However, if you are bringing us an engine and ECU that we have never actually mapped live before. we may have a problem because the manufacturer goes to great lengths to encrypt and hide all the maps within the ECU calibration. They really don't really like us doing what we do, so the job isn't quite as simple as it may at first appear, but

### fast**tech**



now assume you are bringing in a car for mapping that we have done lots of previously.

#### **FULLY EQUIPPED**

First of all, as explained in depth last month we will check your car is road legal, including tax and MoT and then hook the car up with all sorts of hardware such as air/fuel ratio monitors, dataloggers, an ECU emulator, boost gauge, multimeters, G-meter and an emergency toolkit containing all manner of emergency tools and parts that enable us to fix common faults and make adjustments at the roadside.

Once the equipment is in the car. two of us will take it out and assess its current condition, making notes of any shortfalls in the engine and management system like hesitations on acceleration, over or under fuelling, excess fuel consumption and poor performance.

We also run a diagnostic monitor at the same time in order for us to find any faults that may exist on the engine management system; there is absolutely no point trying to map we will come to that later... Let's for i an engine management system that i part of the map and only that part.

is actually faulty. Basically, we are giving the system a health check whilst looking for any areas where we know we can improve your car while mapping it.

After making concise notes on the current performance of the system we will return to the workshop and proceed to perform a brief set-up to ensure all engine settings are correct before hooking the emulator up to the ECU as again, there is no point mapping a car's fuelling, only to find out later the fuel pressure was too high, or low.

To briefly recount on what we covered last month, the EPROM emulator allows us to access in realtime, the precise part of the engine management calibration chip that the ECU is asking information from. For example we may only have an issue with an engine at 3000 rpm at say, half throttle — perhaps a small hesitation at light throttle — the emulator will highlight the exact part of the fuel and spark maps that the ECU is accessing when this hesitation occurs, allowing us to make relevant changes to that

### fast**tech / TECH / MAPPING /**



### SENSORY DEPRIVATION

t is well worth bearing in nind that all the temperatures and pressures displayed within the live mapping screens are fully dependant on the sensors that output that particular data, so always ensure your management sensors are in good order before commencing mapping or the time and money may be wasted. Removing the extra fuel rom the maps of a rich running engine that had an air temperature sensor reading 40 degrees C too hot is not only a waste of time and money, it will also be dangerous to an engine if that sensor is ever replaced with one that works properly as it will start to run dangerously lean The golden rule here is, arbage in, garbage out.



Results are instantaneous, so we can reap the rewards instantly and move on to the next issue that needs resolving.

This form of mapping removes the immense amount of educated guesswork needed to do such a job sat at the desk with no emulator, as we will obviously be trying to guess which part of the map the ECU would be reading from when the issue occurs, burning that to a chip, and taking the car for a drive to see if it has made any difference.

This live accessing method is the emulator's main job but not its only job - our own emulation system also has the ability to simultaneously run two different calibrations and allow us to swap between each at the press of a key with the engine still running. This can be invaluable when you make a mistake — imagine accidentally deleting a fuel map at high speed. Yes, it could happen!

#### LIVE MAPPING

So, the emulator is all connected up and we are ready to go, so what exactly do we map when live mapping? Well, this depends exactly what modifications you have done to your engine.

A simple Fast Road camshaft, exhaust and air filter will normally just require a tweak to the fuel and spark timing maps because all you have done is adjust how

much air comes into the engine under heavy load by removing a few of the manufactured-in restrictions. In these cases we can simply adjust the fuelling maps so that all throttle and load positions are running the kind of air fuel ratio that we personally wish to see.

We will also use detonation cans to help us adjust the spark advance until we are a safe way from detonation, yet still delivering good performance.

If however, you have modified the injectors, engine sensors, inlet/ exhaust ports, compression ratio or maybe even the turbocharger we would have to map far more things. This can mean a week's worth of mapping work is required.

#### WHY A WEEK?

This is a question I have to answer on an almost daily basis and the reason is guite simple. When I map a car I want to give you a car back that performs and drives as well as an equivalent OEMpowered vehicle. One of the failings of many

mappers is that they spend far too much time trying to extract maximum power and not enough time trying to map in some refinement and economy. I absolutely cannot abide cars with engines that will not start and idle perfectly well when cold, engines that rev up and down until they get hot, or keep stalling. Almost as

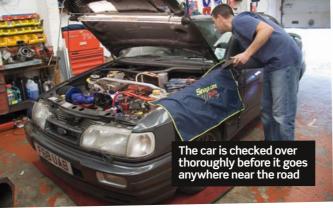


Ford EEC ECUs are accessed via the expansion port on the side



annoying is a car that will not drive properly when cold and tends to jerk, pop, fart and kangaroo or cut out at every junction.

When we map a car it absolutely will not do any of those things and it will drive as near to a standard OEM car as it is possible to be with your particular combination of engine, modifications and management.


Going back to the question ... Well, the time delay is due to the fact that once we have perfected a main fuel map with the engine hot and we are totally happy that it achieves all our aims, we can have a go at mapping the cold starting and running correction maps.

These maps are in essence an electronic version of the old choke knobs that you used to pull out on the dashboard to get your engine to run cold and had to progressively push back in as the engine warmed through. Sorry? What do you mean you're not old enough to remember that?

#### **CORRECTION FACILITY**

On most EFi systems we have a small correction table within the engine calibration chip that relates only to coolant temperature and for arguments sake it is maybe 10 cells wide starting at —10 degrees C on the extreme left and going up in 10s, terminating at 100 degrees C on the extreme right.

Now, let's assume your car runs badly all the time that it is cold and let's assume for discussions sake that we have ascertained that it is due to being excessively-lean after fitment of camshafts. In this scenario, when using our emulator we will be able to see precisely which coolant multiplier the management is looking at and how much extra fuel it is delivering from the contents of that cell when the poor running occurs, and we are able to modify that data and asses the results immediately, hopefully richening up our lean engine at that temperature.



### fast**tech**

However, as you will know; most cars warm up very quickly nowadays and we don't have much testing time at each of the 10 correction sites before it moves on to the next. As an example, let's say we have just modified the multiplier that deals with the engine when it is at 20 degrees C and are now doing the multiplier that deals with 30 degrees C...

How will we know if we got them right? The only true and accurate test is to wait until the engine is back down at 20 and 30 degrees C to see if it runs correctly and exhibits a correct air/fuel ration at that point or not. If it doesn't, we can make more changes as required but will of course have to wait until the engine is at that temperature again to check our work.

Can you see the pattern emerging here? The bottom line is, to do a job correctly often takes far more time and effort than first meets the eye, as the only way to ensure success is to operate and map the engine during the actual conditions that it is to work within. So that means cold mapping should really be performed with a cold engine.

#### ACCESS ALL AREAS

Which actual engine management system you are using will depend on which mapping program we use to live map the engine. However, regardless of mapping program will have to hook up the emulator to your ECU in some way or other. Ford EEC systems are very simple to interface, we access these computers via an expansion port on the side of the unit.

Weber-Marelli systems are interfaced via the EPROM socket and we have to literally remove the EPROM and insert an interface cable in its place.

Let's take a look at the Weber-Marelli mapping system. Invariably for this system we will use a special mapping program that decrypts the maps and gives us masses of information and access to every map we could possibly want to adjust. As an example here is a brief list of the maps that are available within a Ford Cosworth Level I-Level 8 ECU:

Fuel injection map Spark advance map Boost control map Coolant fuel adder map Coolant spark adder map Batter adder map Air temperature adder map **Rev limiters Boost limiters** Over run fuelling tables Crank fuelling After start fuelling **Closed loop correction level** tables and switches Knock retard look up table Injection phasing Injector scaling Many transient fuel correction adjustments.

And on our latest revision of Level 8 software:

Launch control maps and switches. Anti-lag system control maps and switches.

The Ford EEC management system uses a completely different type of software but again gives us access to various maps that will allow us to pretty much do anything we require.

These maps include the following features that are not present in the Weber system due to ECU advances and the fact it uses Mass Airflow (MAF) instead of speed density. MAF transfer tables **Torque transfer tables** 

| Eile Map Edit Analize View Emulator Window Help |      |     |     |        |      |      |     |      |      |     |       |     |    |     |     |        |
|-------------------------------------------------|------|-----|-----|--------|------|------|-----|------|------|-----|-------|-----|----|-----|-----|--------|
| 🖉 🗃                                             | 1    |     | 2   | í fi   | B #  |      |     |      | 76 4 |     | ± f(x |     |    |     |     | abs \$ |
| HEX 🗄                                           |      |     |     |        |      |      |     |      |      |     |       |     |    |     |     |        |
| RAM2                                            | 1    | 2   | 3   | 4      | 5    | 6    | 7   | 8    | 9    | 10  | 11    | 12  | 13 | 14  | 15  | 16     |
| 003840                                          | DA   | DA  | DA  | DA     | DC   | DE   | F7  | FF   | FF   | FF  | FF    | FF  | FF | FF  | FF  | FF     |
| 003850                                          | AA   | AA  | A8  | A8     | A9   | AF   | D5  | E8   | FB   | FF  | FF    | FF  | FF | FF  | FF  | FF     |
| 003860                                          | 8F   | 8F  | 8F  | 90     | 91   | 93   | A2  | B9   | BE   | C2  | C7    | СВ  | CD | D1  | D4  | D4     |
| 003870                                          | 91   | 91  | 93  | 92     | 93   | 94   | 95  | 95   | 9B   | 9F  | A1    | A4  | A7 | AB  | AD  | AD     |
| 003880                                          | 74   | 75  | 76  | 76     | 75   | 74   | 75  | 76   | 7A   | 7B  | 7D    | 80  | 82 | 84  | 86  | 87     |
| 003890                                          | 58   | 58  | 58  | 5A     | 5B   | 5D   | 5F  | 60   | 63   | 67  | 6B    | 6F  | 74 | 77  | 78  | 79     |
| 0038A0                                          | 46   | 47  | 4B  | 55     | 56   | 55   | 57  | 57   | 57   | 58  | 57    | 56  | 57 | 57  | 57  | 59     |
| 0038B0                                          | 30   | 30  | 2F  | ЗB     | ЗE   | ЗD   | ЗF  | ЗD   | ЗC   | ЗD  | ЗE    | ЗC  | ЗB | ЗC  | ЗD  | ЗB     |
| 0038C0                                          | 1F   | 1F  | 1A  | 1D     | 1F   | 1F   | 20  | 1F   | 1E   | 20  | 20    | 1C  | 1D | 20  | 1E  | 19     |
| 0038D0                                          | 08   | 07  | 08  | 0F     | 11   | 11   | 11  | OF   | OF   | 11  | 11    | 10  | 11 | 11  | 11  | 11     |
| 0038E0                                          | 04   | 04  | 04  | 08     | 08   | 08   | 08  | 08   | 08   | 08  | 08    | 08  | 08 | 08  | 08  | 09     |
| 0038F0                                          | 01   | 01  | 02  | 02     | 02   | 02   | 02  | 02   | 02   | 02  | 02    | 02  | 02 | 02  | 02  | 02     |
| 003900                                          | 00   | 00  | 00  | 00     | 00   | 00   | 00  | 00   | 00   | 00  | 00    | 00  | 01 | 01  | 01  | 01     |
| 003910                                          | 85   | 74  | 6A  | 5F     | 57   | 50   | 4A  | 44   | ЗF   | ЗB  | 37    | 34  | 31 | 2F  | 2D  | 2B     |
| 003920                                          | 7A   | 77  | 72  | 6A     | 63   | 5A   | 54  | 4F   | 4B   | 47  | 42    | 40  | 40 | 40  | 40  | 40     |
| 003930                                          | CE   | CC  | C8  | BD     | A8   | 88   | 60  | 43   | 32   | 26  | 22    | 21  | 20 | 20  | 20  | 20     |
| Figure                                          | 1: f | uel | map | o in h | nexc | leci | mal | forn | nat  | can | be r  | ead | by | the | ECU |        |

### fast**tech / TECH /** MAPPING /

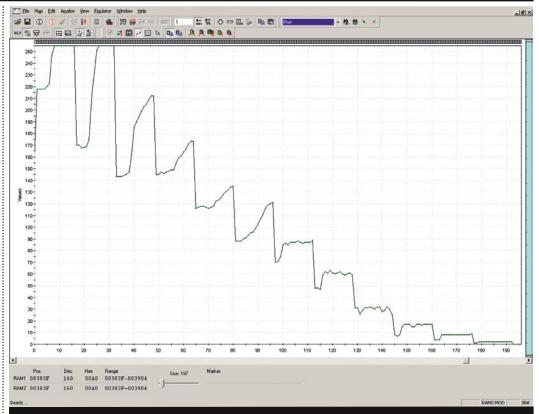
| RAM2   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 003840 | 56026 | 56026 | 56542 | 63487 | 65535 | 65535 | 65535 | 65535 | 43690 | 43176 | 43439 | 54760 | 64511 | 65535 | 65535 | 65535 |
| 003860 | 36751 | 36752 | 37267 | 41657 | 48834 | 51147 | 52689 | 54484 | 37265 | 37778 | 37780 | 38293 | 39839 | 41380 | 42923 | 44461 |
| 003880 | 29813 | 30326 | 30068 | 30070 | 31355 | 32128 | 33412 | 34439 | 22616 | 22618 | 23389 | 24416 | 25447 | 27503 | 29815 | 30841 |
| 0038A0 | 17991 | 19285 | 22101 | 22359 | 22360 | 22358 | 22359 | 22361 | 12336 | 12091 | 15933 | 16189 | 15421 | 15932 | 15164 | 15675 |
| 0038C0 | 07967 | 06685 | 07967 | 08223 | 07712 | 08220 | 07456 | 07705 | 02055 | 02063 | 04369 | 04367 | 03857 | 04368 | 04369 | 04369 |
| 0038E0 | 01028 | 01032 | 02056 | 02056 | 02056 | 02056 | 02056 | 02057 | 00257 | 00514 | 00514 | 00514 | 00514 | 00514 | 00514 | 00514 |
| 003900 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00257 | 00257 | 34164 | 27231 | 22352 | 19012 | 16187 | 14132 | 12591 | 11563 |
| 003920 | 31351 | 29290 | 25434 | 21583 | 19271 | 16960 | 16448 | 16448 | 52940 | 51389 | 43144 | 24643 | 12838 | 08737 | 08224 | 08224 |

Figure 2: fuel map in 16-bit format. This will need converting to a readable format before the map can be safely altered

#### Torque limiter maps for each gear Adaptive fuel control maps And over 200 more!

When using one of the management systems such as Weber-Marelli or Ford EEC, getting down to the job of actually mapping is a pretty straightforward process of hooking up equipment and loading software to allow us access to the maps.

The problems arise when you bring a new model that we have never mapped before. This means that due to the encryption in the ECU we will not actually have any access to the maps or even addresses of where to find them, this is where timeconsuming R&D comes into the mapping arena. In cases such as this we will extract the engine calibration data from the ECU by means of either removing and reading the EPROM or extracting it via the diagnostic port on the dashboard.


Once we have the calibration program we will then load it into a very special mapping program that allows us to analyse the data on the chip in various different formats.

#### **SHOW AND TELL**

An engine calibration file in its native state is simply a computer program presented in a binary format. This format is of absolutely no use to us at the moment so we need to convert this complex looking data into a more graphical representation.

If you look at figure 1 and 2 you can see what appears to be a collection of meaningless numbers. Figure 1 is hexdecimal, and figure 2 16 bit, however if you look at figure 3 you will see exactly the same data but represented as a two-dimensional graph, this is where it starts to get interesting... The 2 dimensional view shows what appears to be a map, which is so recognised by its recurring graphical appearance.

This is just one of the painstaking ways in which we find maps in new systems and it can take many hours and even days to figure out, via an emulator, what they actually



#### Figure 3: the 16-bit fuel data deciphered and represented as a 2D graph or 'map'

| 13) | (16  |     |      |      |      |      |      |      | RPI  |      |      |      |      |      |      |      |      |
|-----|------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1   | RAM2 | 800 | 1000 | 1300 | 1500 | 1800 | 2000 | 2300 | 2500 | 2700 | 3000 | 3500 | 4000 | 4500 | 5500 | 6500 | 7000 |
|     | 100  | 218 | 218  | 218  | 218  | 220  | 222  | 247  | 255  | 255  | 255  | 255  | 255  | 255  | 255  | 255  | 255  |
|     | 92   | 170 | 170  | 168  | 168  | 169  | 175  | 213  | 232  | 251  | 255  | 255  | 255  | 255  | 255  | 255  | 255  |
|     | 85   | 143 | 143  | 143  | 144  | 145  | 147  | 162  | 185  | 190  | 194  | 199  | 203  | 205  | 209  | 212  | 212  |
| 12  | 77   | 145 | 145  | 147  | 146  | 147  | 148  | 149  | 149  | 155  | 159  | 161  | 164  | 167  | 171  | 173  | 173  |
|     | 69   | 116 | 117  | 118  | 118  | 117  | 116  | 117  | 118  | 122  | 123  | 125  | 128  | 130  | 132  | 134  | 135  |
|     | 62   | 088 | 088  | 088  | 090  | 091  | 093  | 095  | 096  | 099  | 103  | 107  | 111  | 116  | 119  | 120  | 121  |
| ad  | 54   | 070 | 071  | 075  | 085  | 086  | 085  | 087  | 087  | 087  | 088  | 087  | 086  | 087  | 087  | 087  | 089  |
| 2   | 46   | 048 | 048  | 047  | 059  | 062  | 061  | 063  | 061  | 060  | 061  | 062  | 060  | 059  | 060  | 061  | 059  |
|     | 38   | 031 | 031  | 026  | 029  | 031  | 031  | 032  | 031  | 030  | 032  | 032  | 028  | 029  | 032  | 030  | 025  |
|     | 31   | 008 | 007  | 008  | 015  | 017  | 017  | 017  | 015  | 015  | 017  | 017  | 016  | 017  | 017  | 017  | 017  |
|     | 23   | 004 | 004  | 004  | 008  | 008  | 008  | 008  | 008  | 008  | 008  | 008  | 008  | 008  | 008  | 008  | 009  |
|     | 15   | 001 | 001  | 002  | 002  | 002  | 002  | 002  | 002  | 002  | 002  | 002  | 002  | 002  | 002  | 002  | 002  |
|     | 8    | 000 | 000  | 000  | 000  | 000  | 000  | 000  | 000  | 000  | 000  | 000  | 000  | 001  | 001  | 001  | 001  |

Figure 4: the fuel data is then reassembled so that it can be altered at various load and rpm points

do, but once we have deciphered them we know where the key maps that we require are located and what they do, we can access them instantly the next time.

Once a calibration has been deciphered, our mapping software reassembles it on the mapping screen in a way that humans can understand and work with (see figure four). Of course, if we require access to tricky parts of the program, such as simple switches, we have to have the whole thing de-compiled professionally, and that takes time and money.

For the record, we have access to over 23,000 different ECU calibration maps at time of writing, so it's extremely rare you will bring one in that we haven't already got the information for.

### **NEXT MONTH**

What maps we tend to have to change and why we need to change them for specific mods like cams, heads and turbos, as well as why fuel mixture and spark advance differ according to loads and mods.